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ABSTRACT 

If Banach spaces X, X* are both weakly compactly generated, then X has an 
equivalent norm whose dual on X* is locally uniformly rotund. 

1. Introduction 

The proof of the main result given in Section 3 is done exactly by the same 

method as Trojanski's [10] proof for generally non-dual (WCG) Banach spaces, 

the only new point here is the arrangement that all cases are w* lower semicon- 

tinuous in X*. 

We will work in real Banach spaces. A Banach space X (in short, a B-space X) 

is weakly compactly generated (WCG) if X is the closed linear hull of some 

weakly compact absolutely convex K c X, i.e., X = sp K. A B-space X is locally 

uniformly rotund (LUR) i f  the relations II xn [I = II x [I = 1, lim II Xn + x II = 2 imply 

lim II - x I1 = 0. Furthermore, a B-space X is an (F) space if the norm of X is 

Fr6chet differentiable at any nonzero point, co(F ) is the B-space of  all real valued 

funct ionsf  on a set F such that for any e> 0, {V �9 F; [] ' (Jl  > e} is finite, with the 

supremum norm. For a B-space X, dens X is the smallest cardinal number of a 

norm dense subset of X. 

2. Applications of the main result 

The following corollary solves problem 13 of  [8]. 

COROLLARY 1. If X and X* are (WCG), then X has an equivalent (LUR) and 

(F) norm whose dual is also (LUR). 

PROOF. The result follows from the Asplund's averaging procedure [3] and 

from the duality between (F) and (LUR) [9]. 
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COROLLARY 2. I f  X,  X* are both (WCG) then X is an (SDS) space in the sense 

of [-41, p. 31, i.e., any continuous convex function in X is Fr~chet differentiable 

on a dense G6 subset of its domain of continuity. 

PROOF. See I-41, p. 32. 

The next corollary solves partially problem 16 in [-8]. 

COROLLARY 3. I f  X,  X* are both (WCG), then X* is a boundedly Krejn- 

compact B-space in the sense of [-51, p. 1, i.e., each norm closed convex bounded 

subset of X* is the norm closed convex hull of its extreme points. 

PROOF. See [,5], p. 4 or [-11], p. 453. 

COROLLARY 4. I f  X*,X** are both (WCG), then any closed convex bounded 

subset of X is the closed convex hull of its strongly exposed points (see [7] for 

definition). 

PROOF. Use [111, p. 452. 

3. Preparatory ~emmas 

We will need some modifications of the ideas of [,11 . We state them in several 

lemmas. 

LEMMA 1. Let X be a linear space with 3 norms 1" 11, l" 12, ]" 13, such that 

Ix1-<_lxl. lxll < [ x l a f ~  x e X .  Then, givene>O, an integer n > 0 ,  l 

elements f l ,  "",fi ~(X,] -  12)*, and a finite-dimensional subspace B c X,  there 

exists an No-dimensional subspace C ~ X containing B, such that for every 

subspace Z of X with Z ~ B and dim Z /B = n, there is a linear operator T: Z ~ C 

with [ T[ ~ < 1 + e (for all ~ = 1, 2, 3), Tb = b for  every b e B and [fk(Z) -- fk(TZ) l 

< e[zl2for every z e Z  and k = 1,...,1. 

PROOF. Let P be a ] �9 [1-bounded projection of X onto B. Then P is bounded 

in all three norms and let K be such that [ P I �9 < K, for 0c = 1, 2, 3. Choose m > 1 

such that m > 6 (1 + K)~-1. 

Let r be an integer. Choose bt, "", b~ in B such that, for every b ~B, and every 

0t= 1,2,3 the following holds: if] <-_ r then there is an h (1 < h < p) such that 

such that i b - bh l~ < m- t .  

Let us consider the norm 12] = E~'=I I ,1 in the Euclidean space R n. 

Let s be an integer and choose the elements 2~,...,;t q in the unit sphere 
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S" = {2~R";I;L[ = 1} of R", such that for every 2eS"  there is j ,  1 < j < q ,  

so that l 2 - 2  j < m - i s  -a 

Fix now the integers r and s and define the following N = 3n + 3pq + In real- 

valued functions of x = (xi, "", x,) ~ X ", 

] xil~,, lb,  + ~, 2{xi[~, fk(Xi) 
i = i  

l < i < n , l  s  < j N q ,  l <_k<l .  

These functions can be regarded as a function ~b from X" into R N. Taking, in 

R N, the metric p of maximal coordinate distance, we choose a sequence {~b(x')}, 

x t = (x~,..., xt,,) e X" which is/)-dense in ~b(X"). This sequence is constructed for 

fixed r, s. Thus we have a sequence {x t} = {x ''s} for each r, s. Let C be the subspace 

spanned by B and the {xt[ s} (i = 1,. . . ,  n; t, r, s = 1, 2,...). 

Given any Z ~ B  with dim Z / B = n ,  choose z l , . . . , z , , e ( I - P ) Z ,  such that 

I x2,z,l~ 121 for every 2 e R  ~ and every e =  1,2,3. (It is sufficient to choose 

Zl , . . . , z .  linearly independent and multiply them all by a sufficiently large 

number.) Choose s such that [ zi]~ < s for all 1 -< i < n, e = 1, 2, 3, and choose r 

such that 2s + 1 < e(r - s). Let us now fix these values of s and r for the rest of 

the proof. 

Let x = (xl,  . . . ,x , )  be an element from the above constructed sequence (for s 

and r chosen) such that p(d?(xl, . . . ,x.),  ~(zl ,  . . . ,z ,))  < m - L  Define on Z 

T b + 2iz i = b + Z 2~x~ where b s B. 
i = i  / = 1  

Obviously T z E C  and Tb = b for all b e B .  To prove that I Tl~___ 1 +~,  it 

suffices to show that [b + Z2,x~l= =< (1 + e)l b + ~.2izil~ whenever 121 = 1. 

If] bl~> r, then I b + Y/.2izi]=> r -  s, while 

]b + Y,A,x,I~<=lb+ X 2 , z , l ~ + l X 2 , z , l ~ + l X 2 , x , l ~  

<= [ b + 22,z,1~ + s + (s + 1) S]b + X2,z,[~ + e(r - s) 

< ( 1 +  Olb + X2izi[ ~. 

(We used the fact that [ ] x, ]~ - [ z,]~ [ ___ m -1  _< 1; hence  [ x, [~ <_ I ~, [~ + 1 <=s + 1.) 

Ifj  b]~ < r, let bh be m-l-approximation to b and let 2J be m-ls-~-approxima - 

tion to 2 ~ S". We have 

Ib + X 2 , x , ] ~ - ] b +  :rA,z l~<=Xlb-b~l  ~ 

_ _ 2izi] ~ 
i f 
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=< 2m -1 + m - i  + (s + 1)m- is  -1 + sin- is  -x =< 6m -1, 

eib + Z).izi[~ > - ~l I -  P[2 ' I  ZX,z,l~ ---- ~(1 + k) -1 > 6m-1 

If  z = b + xZ,~iz i, then 

I.f~(z)-A(Zz)[ = I 2,~,(/~(~,)-S~(x,))I _-< m-~l ~1, 
while 

Hence 

Ifk(z) -- fk(Tz)  l /l z [2 <= m- ' (1  + K) < e. 

As in [1], if there are given some norms on X, all topological terms will refer to 

the IL" N-norm. 
Similarly as in [1] we prove 

LENNA 2. L e t X b e a l i n e a r s p a c e w i t h t h r e e n o r m s  I "I ' l l"  II'lll "Ill suchthat  

the Ill" Ill-unit ball is II" ]I-weakly compact, Suppose that the I" I ' t~176176 is 

weaker than the it " ll-t~176176 on X. Let # be the first ordinal of cardinality dens 

X and let {x~, c~ < IX} be dense in X. Then there is a "long sequence" of linear 

projections {P~, co _< c~ _< #} such that I P~l --]l P~ II - l l[P~ll l  = 1, x~ ~ P~+ i x ,  dens 

P ~ X < ~  for  every ~, P~PB=PBP~=PB i f  f l < a ,  P~xesp{Pr162 , and 

~ ;  II P~+,x - P~x II > ~) is f inite for any x e X , ,  > 0. 

Now we are able to prove 

LEMMA 3. Assume X is a B-space such that X , X *  are both (WCG). Let If" II 
denote the natural norm on X* and let # be the first ordinal of cardinality dens 

X*. Then there is a dense subset {f~; a < #) in X*, and a "long sequence" 

{P~; co < cr </2} of linear projections on X* such that [I P~ [I = 1, P~ is w*-w* 

continuous on X* , f~eP~+IX* ,  dens P~X* < ~ for  any o~, P~PB = PBP~ = Pafo  r 

fl < ~, P f f e  sp {Pc+ lf}r and {a; 1[ P~ + i f -  P J  [1 > e} is finite for  every f e  X* 

and e > O. 

PROOF. Let K, L be weakly compact absolutely convex sets in X, X* res- 

pectively, such that X = sp K, X* = sp L. Let us define on X* another norm 
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If] = s u p { I f ( x ) l ; x ~ K )  and on the linear hull Y of L in X* the third norm 

]llfllI = inf{~, > 0 ; f e  2L}. 

Choose {f~; a < p}, a II" II "dense net in Y. By Lemma 2, there is a long sequence 

of linear projections/~, on Y with the properties stated in Lemma 2. Let us extend 

/~- [l" ll'c~176 to projection P, :  X* ~ X*. Obviously ilP, il = 1 and P~ 

satisfy the properties of Lemma 2. It can easily be shown that for every e > 0 the 

set {~; i[ P = + l f -  Pffll > 5} is finite even for every f ~ X * .  

It remains to show w*-w* continuity of P,. For this, observe that the P, 's  are 

I " ] -c~176 In fact, denote by f" the completion of (Y,I .  1) and b y / ~  the 

l" l "c~176 extention of P~ on f'. Obviously, X* c I?. Now it is easy to see 

that P,  = P,  on X* and thus the P~'s are 1" [-continuous and [P,[ = 1. 

Now using the fact that K is weakly compact convex we conclude, exactly as in 

the proof of Proposition 2 of Ell, that the identity mapping of X* is w*-w con- 

tinuous, where w means the weak topology of the norm I" [" The II" II-unit ball B 

of X* being w*-compact, we see that the w and w* topologies coincide on B. As 

every P,  is w-w continuous and P~ B c B, it follows that the P, 's  are w*-w* 

continuous on B and in virtue of the Banach-Dieudonn6's theorem the P~'s are 

w*-w* continuous on X*. 

Like S. Trojanski ([10], p. 177) we will need the following. 

LEMMA 4. Suppose a Banach space X and its dual X* are both (WCG). 

Then there is a long sequence of bounded linear w*-w* continuous operators 

T,: X* ~ X* ( e s A )  such that 

(i) for any f s X *  and ~ > O, the set 

A( f ,~ )  = {~;  11T +,S- rosll > 5(11 T: II + ii II)) 
is finite, where l[ " [[ is the natural norm on X*, 

(ii) for any f e X*, 

f e  -- spell TITII TlX*u U (Y=+ 1- TDX*], 
a E A ( f )  

where A ( f ) =  U,>oA(f,e), 

(iii) dens sp (T~+ 1 - T~)X* < dens T1X* = N o. 

The proof follows the Trojanski's proof (ElO], p. 177), by observing that if 

P ' a r e  w* - w* continuous projections on X*, then (P~*+ 1 * * - P ~ ) X  is isometrically 

isomorphic to ((P~+ x -  P~)X)* by a mapping which is w*-w* continuous with its 

inverse and both * * * (P~+I - P~)X and (P~+I - P~) X are (WCG). 
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For  the p roof  of  our theorem we will need the following observation. 

LEMMA 5. I f  X is a Banach  space and L ~ X is a closed subspace o f  it ,  then 

the d is tance  o f  f e X *  f r o m  L • is a w* lower semicont inuous  func t iona l .  

PROOF. I f  R denotes the restriction o f f  to L, then it is easily seen that 

p(f, L • = I I f  Ilx., - = Rfll,... 

4. Proof of the main result 

The proof  follows exactly as the proof  of  Trojanski ([10], p. 175, 176) and all 

cases can be made, by use of  the lemmas above, to be w* lower semi-continuous. 

For  example the function EJ")(J) on X* defined on p. 175 is w* lower semi-con- 

tinuous because it is the distance from a finite dimensional subspace of X*. And 

for an operator T :  X* ~ co(F), one should take the operator given by propo- 

sition 2 of  [1] which is w * - w  continuous. 
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